Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 28(3)2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36770920

RESUMO

Alzheimer's disease (AD) is characterized by several pathological hallmarks, including the deposition of amyloid-ß (Aß) plaques, neurofibrillary tangles, blood-brain barrier (BBB) dysfunction, and neuroinflammation. Growing evidence support the neuroprotective effects of extra-virgin olive oil (EVOO) and oleocanthal (OC). In this work, we aimed to evaluate and compare the beneficial effects of equivalent doses of OC-low EVOO (0.5 mg total phenolic content/kg) and OC (0.5 mg OC/kg) on Aß and related pathology and to assess their effect on neuroinflammation in a 5xFAD mouse model with advanced pathology. Homozygous 5xFAD mice were fed with refined olive oil (ROO), OC-low EVOO, or OC for 3 months starting at the age of 3 months. Our findings demonstrated that a low dose of 0.5 mg/kg EVOO-phenols and OC reduced brain Aß levels and neuroinflammation by suppressing the nuclear factor-κB (NF-κB) pathway and reducing the activation of NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) inflammasomes. On the other hand, only OC suppressed the receptor for advanced glycation endproducts/high-mobility group box 1 (RAGE/HMGB1) pathway. In conclusion, our results indicated that while OC-low EVOO demonstrated a beneficial effect against Aß-related pathology in 5xFAD mice, EVOO rich with OC could provide a higher anti-inflammatory effect by targeting multiple mechanisms. Collectively, diet supplementation with EVOO or OC could prevent, halt progression, and treat AD.


Assuntos
Doença de Alzheimer , Camundongos , Animais , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Azeite de Oliva/farmacologia , Doenças Neuroinflamatórias , Receptor para Produtos Finais de Glicação Avançada , Camundongos Endogâmicos NOD , Peptídeos beta-Amiloides/metabolismo , Fenóis/farmacologia , Fenóis/uso terapêutico
2.
ACS Chem Neurosci ; 13(7): 1002-1013, 2022 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-35263086

RESUMO

Alzheimer's disease (AD) is the most common form of dementia among several neurodegenerative disorders afflicting the elderly. AD is characterized by the deposition of extracellular amyloid-ß (Aß) plaques, disrupted blood-brain barrier (BBB), and neuroinflammation. Several studies have demonstrated the health benefits of olive oil and olive leaf extract (OLE) due to their polyphenolic content. The main phenolic compound in OLE is glycosylated oleuropein (OLG), while the aglycon form of oleuropein (OLA) exists in much lower amounts. This work aimed to evaluate the effect of a low dose of OLG-rich OLE and the mechanism(s) that contributed to the observed beneficial effects against Aß pathology in the homozygous 5xFAD mouse model. Mice were fed with OLE-enriched diet (695 µg/kg body weight/day) for 3 months, starting at 3 months old. Overall findings demonstrated that OLE reduced neuroinflammation by inhibiting the NF-κB pathway and suppressing the activation of NLRP3 inflammasomes and RAGE/HMGB1 pathways. In addition, OLE reduced total Aß brain levels due to increased clearance and reduced production of Aß and enhanced BBB integrity and function, which collectively improved the memory function. Thus, the consumption of OLE as a dietary supplement is expected to stop and/or slow the progression of AD.


Assuntos
Doença de Alzheimer , Olea , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Glucosídeos Iridoides , Camundongos , Doenças Neuroinflamatórias , Olea/metabolismo , Extratos Vegetais
3.
Int J Mol Sci ; 22(3)2021 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-33513818

RESUMO

In Alzheimer's disease (AD), several studies have reported blood-brain barrier (BBB) breakdown with compromised function. P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP) are transport proteins localized at the BBB luminal membrane and play an important role in the clearance of amyloid-ß (Aß). The purpose of this study was to investigate the effect of pharmacological inhibition of Aß efflux transporters on BBB function and Aß accumulation and related pathology. Recently, we have developed an in vitro high-throughput screening assay to screen for compounds that modulate the integrity of a cell-based BBB model, which identified elacridar as a disruptor of the monolayer integrity. Elacridar, an investigational compound known for its P-gp and BCRP inhibitory effect and widely used in cancer research. Therefore, it was used as a model compound for further evaluation in a mouse model of AD, namely TgSwDI. TgSwDI mouse is also used as a model for cerebral amyloid angiopathy (CAA). Results showed that P-gp and BCRP inhibition by elacridar disrupted the BBB integrity as measured by increased IgG extravasation and reduced expression of tight junction proteins, increased amyloid deposition due to P-gp, and BCRP downregulation and receptor for advanced glycation end products (RAGE) upregulation, increased CAA and astrogliosis. Further studies revealed the effect was mediated by activation of NF-κB pathway. In conclusion, results suggest that BBB disruption by inhibiting P-gp and BCRP exacerbates AD pathology in a mouse model of AD, and indicate that therapeutic drugs that inhibit P-gp and BCRP could increase the risk for AD.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Acridinas/farmacologia , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Barreira Hematoencefálica/metabolismo , Encéfalo/efeitos dos fármacos , Tetra-Hidroisoquinolinas/farmacologia , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/antagonistas & inibidores , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Acridinas/administração & dosagem , Doença de Alzheimer/patologia , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Barreira Hematoencefálica/patologia , Encéfalo/metabolismo , Encéfalo/patologia , Linhagem Celular , Modelos Animais de Doenças , Imunoglobulina G/metabolismo , Imuno-Histoquímica , Masculino , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Camundongos Transgênicos , NF-kappa B/metabolismo , Transdução de Sinais/efeitos dos fármacos , Sinapses/efeitos dos fármacos , Sinapses/metabolismo , Tetra-Hidroisoquinolinas/administração & dosagem , Junções Íntimas/metabolismo
4.
Sci Rep ; 10(1): 11096, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32606448

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

5.
Sci Rep ; 10(1): 3751, 2020 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-32111883

RESUMO

A major characteristic of Alzheimer's disease (AD) is the accumulation of misfolded amyloid-ß (Aß) peptide. Several studies linked AD with type 2 diabetes due to similarities between Aß and human amylin. This study investigates the effect of amylin and pramlintide on Aß pathogenesis and the predisposing molecular mechanism(s) behind the observed effects in TgSwDI mouse, a cerebral amyloid angiopathy (CAA) and AD model. Our findings showed that thirty days of intraperitoneal injection with amylin or pramlintide increased Aß burden in mice brains. Mechanistic studies revealed both peptides altered the amyloidogenic pathway and increased Aß production by modulating amyloid precursor protein (APP) and γ-secretase levels in lipid rafts. In addition, both peptides increased levels of B4GALNT1 enzyme and GM1 ganglioside, and only pramlintide increased the level of GM2 ganglioside. Increased levels of GM1 and GM2 gangliosides play an important role in regulating amyloidogenic pathway proteins in lipid rafts. Increased brain Aß burden by amylin and pramlintide was associated with synaptic loss, apoptosis, and microglia activation. In conclusion, our findings showed amylin or pramlintide increase Aß levels and related pathology in TgSwDI mice brains, and suggest that increased amylin levels or the therapeutic use of pramlintide could increase the risk of AD.


Assuntos
Secretases da Proteína Precursora do Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Polipeptídeo Amiloide das Ilhotas Pancreáticas/farmacologia , Microdomínios da Membrana/metabolismo , Processamento de Proteína Pós-Traducional , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Secretases da Proteína Precursora do Amiloide/genética , Precursor de Proteína beta-Amiloide/genética , Animais , Angiopatia Amiloide Cerebral/genética , Angiopatia Amiloide Cerebral/metabolismo , Angiopatia Amiloide Cerebral/patologia , Gangliosídeo G(M1)/genética , Gangliosídeo G(M1)/metabolismo , Gangliosídeo G(M2)/genética , Gangliosídeo G(M2)/metabolismo , Microdomínios da Membrana/genética , Microdomínios da Membrana/patologia , Camundongos , Camundongos Transgênicos , N-Acetilgalactosaminiltransferases/genética , N-Acetilgalactosaminiltransferases/metabolismo
6.
Int J Mol Sci ; 20(6)2019 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-30934587

RESUMO

Alzheimer's disease (AD) is the most common neurodegenerative disorder affecting 5.4 million people in the United States. Currently approved pharmacologic interventions for AD are limited to symptomatic improvement, not affecting the underlying pathology. Therefore, the search for novel therapeutic strategies is ongoing. A hallmark of AD is the compromised blood-brain barrier (BBB); thus, developing drugs that target the BBB to enhance its integrity and function could be a novel approach to prevent and/or treat AD. Previous evidence has shown the beneficial effects of growth factors in the treatment of AD pathology. Based on reported positive results obtained with the product Endoret®, the objective of this study was to investigate the effect of plasma rich in growth factors (PRGF) on the BBB integrity and function, initially in a cell-based BBB model and in 5x Familial Alzheimer's Disease (5xFAD) mice. Our results showed that while PRGF demonstrated a positive effect in the cell-based BBB model with the enhanced integrity and function of the model, the in-vivo findings showed that PRGF exacerbated amyloid pathology in 5xFAD brains. At 10 and 100% doses, PRGF increased amyloid deposition associated with increased apoptosis and neuroinflammation. In conclusion, our results suggest PRGF may not provide beneficial effects against AD and the consideration to utilize growth factors should further be investigated.


Assuntos
Amiloide/metabolismo , Barreira Hematoencefálica/patologia , Peptídeos e Proteínas de Sinalização Intercelular/efeitos adversos , Plasma/química , Peptídeos beta-Amiloides/metabolismo , Animais , Astrócitos/metabolismo , Biomarcadores/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Proteína 4 Homóloga a Disks-Large/metabolismo , Mediadores da Inflamação/metabolismo , Radioisótopos do Iodo , Camundongos Transgênicos , Transporte Proteico , Fator A de Crescimento do Endotélio Vascular/metabolismo
7.
Neurobiol Dis ; 125: 123-134, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30710675

RESUMO

Alzheimer's disease (AD) is a complex neurodegenerative disorder with multiple dysfunctional pathways. Therefore, a sophisticated treatment strategy that simultaneously targets multiple brain cell types and disease pathways could be advantageous for effective intervention. To elucidate an effective treatment, we developed an in vitro high-throughput screening (HTS) assay to evaluate candidate drugs for their ability to enhance the integrity of the blood-brain barrier (BBB) and improve clearance of amyloid-ß (Aß) using a cell-based BBB model. Results from HTS identified etodolac and α-tocopherol as promising drugs for further investigation. Both drugs were tested separately and in combination for the purpose of targeting multiple pathways including neuroinflammation and oxidative stress. In vitro studies assessed the effects of etodolac and α-tocopherol individually and collectively for BBB integrity and Aß transport, synaptic markers and Aß production in APP-transfected neuronal cells, as well as effects on inflammation and oxidative stress in astrocytes. Transgenic 5XFAD mice were used to translate in vitro results of etodolac and α-tocopherol independently and with concurrent administration. Compared to either drug alone, the combination significantly enhanced the BBB function, decreased total Aß load correlated with increased expression of major transport proteins, promoted APP processing towards the neuroprotective and non-amyloidogenic pathway, induced synaptic markers expression, and significantly reduced neuroinflammation and oxidative stress both in vitro and in vivo. Collective findings demonstrated the combination produced mixed interaction showing additive, less than additive or synergistic effects on the evaluated markers. In conclusion, this study highlights the significance of combination therapy to simultaneously target multiple disease pathways, and suggest the repurposing and combination of etodolac and α-tocopherol as a novel therapeutic strategy against AD.


Assuntos
Doença de Alzheimer/patologia , Barreira Hematoencefálica/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Etodolac/farmacologia , alfa-Tocoferol/farmacologia , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Antioxidantes/farmacologia , Barreira Hematoencefálica/patologia , Encéfalo/patologia , Sinergismo Farmacológico , Quimioterapia Combinada , Feminino , Camundongos , Camundongos Transgênicos , Estresse Oxidativo/efeitos dos fármacos
8.
J Agric Food Chem ; 66(28): 7337-7346, 2018 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-29902916

RESUMO

The investigation of olive oils stored for a period of 24 months under appropriate conditions (25 °C, dark place, and airtight container) led to the identification of a new major phenolic ingredient, which was named oleocanthalic acid. The structure of the new compound was elucidated using one- and two-dimensional nuclear magnetic resonance in combination with tandem mass spectrometry. The new compound is an oxidation product of oleocanthal and is found in fresh oils in very low concentrations. The concentration of oleocanthalic acid increased with storage time, while the oleocanthal concentration decreased. A similar increase of the oleocanthalic acid/oleocanthal ratio was achieved after exposure of olive oil to 60 °C for 14 days. Although the presence of an oxidized derivative of decarboxymethylated ligstroside aglycon had been reported, it is the first time that its structure is characterized. The isolated compound could induce the expression of amyloid-ß major transport proteins as well as tight junctions expressed at the blood-brain barrier, suggesting that oleocanthalic acid could be beneficial against Alzheimer's disease.


Assuntos
Fármacos Neuroprotetores/química , Azeite de Oliva/química , Sesquiterpenos de Guaiano/química , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/metabolismo , Animais , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Armazenamento de Alimentos , Temperatura Alta , Humanos , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Camundongos , Oxirredução , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...